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MINIREVIEW

Role of Nitric Oxide in Cardiovascular
Adaptation to Intermittent Hypoxia

EUGENIA B. MANUKHINA,*,1 H. FRED DOWNEY,� AND ROBERT T. MALLET�
*Institute of General Pathology and Pathophysiology, Moscow, Russia; and �Department of Integrative

Physiology, University of North Texas Health Science Center, Fort Worth, Texas 76107

Hypoxia is one of the most frequently encountered stresses in

health and disease. The duration, frequency, and severity of

hypoxic episodes are critical factors determining whether

hypoxia is beneficial or harmful. Adaptation to intermittent

hypoxia has been demonstrated to confer cardiovascular

protection against more severe and sustained hypoxia, and,

moreover, to protect against other stresses, including ischemia.

Thus, the direct and cross protective effects of adaptation to

intermittent hypoxia have been used for treatment and preven-

tion of a variety of diseases and to increase efficiency of

exercise training. Evidence is mounting that nitric oxide (NO)

plays a central role in these adaptive mechanisms. NO-depend-

ent protective mechanisms activated by intermittent hypoxia

include stimulation of NO synthesis as well as restriction of NO

overproduction. In addition, alternative, nonenzymic sources of

NO and negative feedback of NO synthesis are important factors

in optimizing NO concentrations. The adaptive enhancement of

NO synthesis and/or availability activates or increases expres-

sion of other protective factors, including heat shock proteins,

antioxidants and prostaglandins, making the protection more

robust and sustained. Understanding the role of NO in

mechanisms of adaptation to hypoxia will support development

of therapies to prevent and treat hypoxic or ischemic damage to

organs and cells and to increase adaptive capabilities of the

organism. Exp Biol Med 231:343–365, 2006

Key words: cardioprotection; hemoglobin; ischemia/reperfusion

damage; nitric oxide synthase; nitric oxide stores; peroxynitrite

Favorable and Adverse Effects of
Intermittent Hypoxia

Intermittent hypoxia may be imposed by physiological

challenges, including strenuous exercise or sojourns at high

altitude, or by several diseases, including obstructive lung

disease, asthma, and sleep apnea. Extensive basic and

clinical research has investigated the impact of intermittent

hypoxia on cells, organs, and intact organisms. Much of this

research has been directed to delineate mechanisms of

physiological responses to acute hypoxic challenges, and to

define the cardiovascular adaptations to chronic intermittent

hypoxia. Powerful protective capabilities of intermittent

hypoxia have been demonstrated, and current studies are

revealing important details regarding mechanisms of

hypoxia-induced cardiovascular protection.

Since conditions of oxygen deficiency have influenced

organisms throughout evolution, mechanisms to sense and

adjust to hypoxia are well developed (1). For example,

breathing a hypoxic atmosphere activates the sympathetic

nervous system to enhance cardiac function and constrict

the peripheral circulation, thereby maintaining aortic blood

pressure and ensuring adequate delivery of oxygen to the

brain and myocardium despite reduced arterial oxygen

content. Mechanisms for adaptation to intermittent hypoxia

may also provide protection against more severe and/or

sustained hypoxia, and, interestingly, confer protection

against other stresses, including ischemia (2–5). According

to the concept of cross adaptation (2), development of

resistance to one factor confers resistance also to other

factors, depending on the pattern of gene expression evoked

by the primary stress factor. This concept applies to

intermittent hypoxia, which elicits a spectrum of direct

and cross protective effects (2) that have been used for

treatment and prevention of a variety of diseases and to

increase the efficiency of exercise training.
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Intermittent hypoxia produces myriad favorable effects

in the cardiovascular system, brain, and other organ

systems. These effects can be grouped into five major

categories:

1) Adaptation of organs and tissues responsible for
oxygen uptake and transport, exemplified by increased

alveolar surface for pulmonary gas exchange (6), prolifer-

ation and increased density of vascular networks (7–10),

enhanced blood oxygen-carrying capacity due to polycy-

themia (11), increased mitochondrial density in brain, liver,

and heart (12, 13), and hypertrophy of brainstem respiratory

neurons (2). This growth of structures and tissues

responsible for adaptation to hypoxia, comprising the

‘‘systemic structural trace’’ of adaptation, results from

selective increases in RNA and protein synthesis in lungs,

heart, bone marrow, coronary blood vessels, and cardiac

sympathetic neurons (2). Consequently, adaptation to

intermittent hypoxia has been used to treat patients with

ischemic heart disease (11, 14), with cardiovascular risk

factors, such as obesity and smoking (15), and with post–

myocardial infarction heart failure (16). Intermittent hyp-

oxia therapy evoked beneficial hemodynamic changes,

increased myocardial contractility, and exerted a persistent

antiarrhythmic effect in patients with neurocirculatory

asthenia associated with ventricular and supraventricular

extrasystole (14). In addition, adaptation to hypoxia

improved myocardial contractility in patients with ischemic

heart disease. This symptomatic improvement allowed

reducing drug doses and withdrawing drug therapy in

patients with neurocirculatory asthenia (14). After adapta-

tion to hypobaric hypoxia the body mass index decreased by

10%, low-density lipoprotein cholesterol decreased, and

high-density lipoprotein cholesterol increased (15). Patients

who breathed hypoxic gas mixtures (FIO2 14%–16%) from

Days 7 to 27 post–myocardial infarction had improved

recovery of hemodynamic performance and exercise

tolerance compared with untreated patients (16).

2) Anti-stress action in the brain and other target
organs. Intermittent hypoxia has been shown to improve the

mental and physical performance of healthy people

functioning under stressful conditions, for example, space

flight or military operations (17, 18). Hypoxic therapy has

also been employed pre- and postoperatively to decrease

stress contributing to postsurgical complications (17, 19,

20). In women adapted to interval normobaric hypoxia 15–

25 days before surgery for uterine myoma, the relative

volume of myometrial blood vessels was larger and the

volume of stroma was smaller than in untreated patients.

Adaptation to hypoxia increased the capillary index and

neovascularization, which improved myometrial blood

supply. Patients adapted to hypoxia displayed less severe

symptoms of mental stress, irritability, and sleep disorders

(19, 20). Moreover, intermittent hypoxia has been success-

fully used in complex therapies for neuroses (15), paranoid

schizophrenia (2), Parkinson’s disease (21), idiopathic

cardiac arrhythmias (22), and alcohol abuse (15, 23). For

example, adaptation to intermittent hypobaric hypoxia

decreased the incidence of ventricular and supraventricular

extrasystole by more than 75% in patients with neurasthenic

syndrome and nonischemic arrhythmias (22). Adaptation to

hypoxia exerted antipsychotic, sedative, and anxiolytic

effects and improved response to therapy in patients with

drug-resistant schizophrenia (2). Men with stage 2 chronic

alcoholism were adapted to intermittent hypoxia at a

simulated altitude of 3,500 m for 3 hrs daily over 24 days.

After the first 7–10 sessions of hypoxia the patients reported

a reduced drive for alcohol and improved sleep, mood, and

appetite, and they became more communicative, self-reliant,

and independent. Adaptation to hypoxia improved bio-

chemical variables, including decreased liver enzyme

release, enhanced antioxidant defense, and reduced lipid

peroxidation products (15, 23).

3) Anti-hypertensive effects. Intermittent hypoxia modi-

fies water and salt metabolism (2), alters myogenic vascular

tone (24), and increases synthesis of vasodilatory factors

(25–27). In combination, these actions are antihypertensive,

and, indeed, intermittent hypoxia programs have proven

efficacious for treating hypertension (17, 28), including

preeclampsia in pregnancy (17, 29).

4) Adaptive changes in the immune system. Intermittent

hypoxia therapy has been effective for treatment of arthritis,

bronchial asthma, autoimmune thyroiditis, and allergic

dermatitis (30, 31). In children with bronchial asthma,

adaptation to hypoxia (3,500 m; 3.5 hrs daily for 20–25

days) increased the attack-free period from 2–4 weeks to 2

months. This effect was associated with decreased circulat-

ing immune complexes and increased serum immunoglo-

bulins. Similar beneficial immune responses were observed

in adult patients with allergic dermatosis, in whom the

affected skin area decreased from 44% to 16%, the

continuous lesion area fell from 29% to 8%, and the

pruritus score declined from 3.7 to 0.19 (30, 31).

5) Enhancement of hepatic lipid metabolism. Adapta-

tion to intermittent hypoxia activates the cytochrome P450

system and 7a-cholesterol hydroxylase in liver (32). By

these mechanisms, intermittent hypoxia may provide

protection against atherogenic dyslipidemia, an important

risk factor for atherosclerosis.

Beneficial Versus Adverse Effects of Intermittent
Hypoxia Are Dependent on the Hypoxic Regimen

Chronic or intermittent hypoxia may have serious

pathophysiological consequences, including pulmonary and

systemic hypertension, myocardial infarction, stroke, and

cognitive dysfunction (33–35), depending on the severity

and duration of the hypoxia insult. On the other hand,

hypoxia may be well tolerated and produce favorable effects

if the duration is brief or the reduction in inspired oxygen is

more moderate.

Angiogenesis produced by intermittent hypoxia may be

protective. Vascular capacity was increased in both left and
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right ventricles of rats adapted to intermittent high-altitude

hypoxia (36). By increasing vascular endothelial growth

factor expression (37, 38), alternating hypoxia and reox-

ygenation promoted myocardial angiogenesis and thereby

decreased the intercapillary diffusion distance for blood-

borne fuels and O2 (39). Coronary flow increased (9) and

coronary resistance fell after adaptation to intermittent

hypoxia, contributing to cardioprotection from ischemia-

reperfusion injury in rats (9, 40). Intermittent hypoxia

increased vascularity in skeletal muscles and enhanced

exercise performance (8). Similar angiogenic effects of

adaptation to hypoxia were observed in rat brain, in which

the average intercapillary distance decreased from ;50 to

;40 lM after 3 weeks of hypobaric hypoxia at a pressure of

380 torr (0.5 atm, equivalent to ;10% normobaric oxygen)

(41). Increased density of brain vessels could be a

mechanism for the antihypertensive effect of adaptation to

hypoxia, which prevented the functional rarefaction of

arterioles and capillaries in brains of spontaneously hyper-

tensive rats (7, 42).

Persistent hypertension is a common maladaption to

severe, sustained, or intermittent hypoxia. Frequent alter-

nation of breathing hypoxic gas (6 secs of 2%–3% O2 every

30 secs) and atmospheric air for several hours per day over 5

to 7 weeks produced a sustained increase in arterial blood

pressure in canine (43) and rat (44, 45) models of

obstructive sleep apnea. This hypertension resulted primar-

ily from increased sympathetic activity and from oxidative

stress (46, 47). It should also be noted that hypoxia induces

hyperventilation, which decreases arterial PCO2, unless

ventilation is restricted as in obstructive lung disease,

asthma, and sleep apnea. Thus, in addition to a shorter

hypoxia stress, sleep apnea differs from other chronic or

intermittent hypoxia protocols by elevating arterial PCO2.

This effect may, in part, be responsible for disparate

findings of sleep apnea studies, since Neckář et al. (48)

found that hypercapnia blunted the cardioprotective effects

of chronic hypoxia.

The response of endothelium-dependent relaxation to

intermittent hypoxia strikingly depends on the hypoxic

regimen. Thus, 14 days of intermittent hypoxia (10% FIO2

for 1 min at 4-min intervals, 12 hrs/day) reduced the

bioavailability of nitric oxide (NO) in the cerebral and

skeletal muscle circulations and severely impaired endothe-

lium-dependent vasodilation in rats (49). In another rat

study, brief (6-sec) exposures to 2%–3% FIO2 at 30-sec

intervals for 7 hrs per day over 35 days produced a sustained

elevation of blood pressure (45). In contrast, adaptation to a

more moderate intermittent hypoxia regimen (simulated

altitude 4,000–5,000 m [equivalent to 12%–10% FIO2], 4

hrs/day for 40 days) stimulated NO production, preventing

development of endothelial dysfunction in spontaneously

hypertensive rats (50). In normotensive rats, the same

intermittent hypobaric hypoxia regimen did not affect

endothelium-dependent relaxation of the aorta, but aug-

mented endothelium-dependent relaxation to acetylcholine

and inhibited norepinephrine-induced contractions of small-

er arteries (51, 52).

Impaired electron flux through the mitochondrial

respiratory chain is an important cause of oxidative stress

during intermittent hypoxia (34). Decreased availability of

oxygen, the terminal electron acceptor of the respiratory

chain, causes ubisemiquinone, a partially reduced free

radical form of coenzyme Q, to accumulate. Ubisemiqui-

none readily transfers its unpaired electron to residual

oxygen, generating the superoxide radical anion (�O2
�).

Although �O2
� itself is not especially harmful, it is a

precursor of the highly reactive, cytotoxic hydroxyl radical

(�OH) and, by irreversible condensation with nitric oxide,

peroxynitrite (ONOO�) (53). Persistent oxidative and nitro-

sative stress likely contributes to the morbidity associated

with chronic, brief intermittent hypoxia caused by recurrent

apneas (34). Accordingly, Joyeux-Faure et al. (54) demon-

strated that repetitive cycles of 40 seconds of hypoxia (FIO2

5%) for 35 days increased ischemia-induced infarction of rat

hearts. In contrast, Zong et al. (3) reported that a 20-day

adaptation program using 5- to 10-min periods of hypoxia

(FIO2 9.5%–10%) followed by 4 mins of normoxia repeated

five to eight times daily was markedly protective against

ischemia-induced infarction of canine hearts.

In contrast to the hypertensive effects of frequent, brief,

intermittent hypoxia, as occurs in sleep apnea, adaptation to

hypobaric hypoxia at simulated altitudes of 4,000–5,000 m

(equivalent to 12%–10% inspired O2 at sea level) for 4 to 5

hrs per day over 40 days exerted a pronounced depressor

effect in spontaneously hypertensive rats (30, 50, 55).

Similar antihypertensive effects resulted from normobaric

breathing of 9%–14% O2 for 3 to 8 mins with 3-min

normoxic intervals for 40–60 mins per day over 20–30 days

in rats and patients (28). Moreover, these hypoxia regimens

attenuated both basal and stress-induced sympathetic

activity in rats (56, 57).

Intermittent hypoxia improves energy producing meta-

bolic processes by increasing formation of mitochondria in

brain and liver, activating electron flux through respiratory

complex I, and increasing efficiency of oxidative phosphor-

ylation (12, 58, 59). Reintroduction of oxygen to the

reductive intracellular environment during intermittent

reoxygenations could generate reactive oxygen species,

which may function as signaling molecules activating

transcription and eventual synthesis of antioxidant enzymes.

Thus, the process of reoxygenation, as well as the period of

hypoxia, may play an important role in the adaptation to

intermittent hypoxia. The ultimate balance between ex-

cessive production of free radicals and enhancement of

antioxidative processes directly depends on the experimen-

tal regimen.

It is evident that duration, frequency, and severity of

hypoxic episodes are critical factors determining whether

intermittent hypoxia is beneficial or harmful (60), and

protocols used in experimental studies of adaptation to

hypoxia have varied greatly (33). Inspired O2 has varied
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from as low as 2%–3% O2 (43–45) to as high as 14%–16%

O2 (16). The duration of exposure to experimental hypoxia

has ranged from seconds to hours, and when the duration of

hypoxia was short, hypoxia exposures were often repeated

multiple times per day. Intermittent hypoxia programs have

varied from as short as 1 day to as long as 90 days. Variable

protocols have certainly contributed to current confusion

regarding the benefits of intermittent hypoxia.

Adaptation to intermittent hypoxia may be beneficial by

increasing efficiency of vascular oxygen transport and

energy supply (2, 61), inducing protective antioxidant

enzymes such as catalase and superoxide dismutase (62)

and heat shock proteins (63), stabilizing cellular membranes

(64), and restricting apoptosis (65). There is increasing

evidence that NO plays a pivotal role in adaptation to

intermittent hypoxia, and the remainder of this review will

specifically examine this issue.

NO Formation and Biochemistry

NOS Isoforms, Expression, and Activation. NO

is produced by five-electron oxidation of the terminal

guanidine group of L-arginine. This complex reaction (Fig.

1) is catalyzed by the enzyme NO synthase (NOS), a

hemoprotein containing both oxidative and reductive

domains. The NOS reaction requires flavins and tetrahy-

drobiopterin as cofactors, while the production of NO itself

requires O2 and NADPH. The reductase domain of NOS

transfers reducing equivalents from NADPH to the heme

domain, where L-arginine is oxidized by a two-step

reaction. First, the NOS flavin accepts an electron from

NADPH and transfers it to the heme iron, reducing

NOSFe3þ to NOSFe2þ. In this step, L-arginine is hydroxy-

lated to form an enzyme-bound intermediate, Nx-hydroxyl-

L-arginine. Next, the heme iron binds O2 and the enzyme

consumes NADPH to oxidize Nx-hydroxyl-L-arginine to

citrulline and NO (66–68).

The NOS family consists of three major isoforms:

neuronal NOS (nNOS or NOS-I), inducible NOS (iNOS or

NOS-II), and endothelial NOS (eNOS or NOS-III). These

NOS isoforms were originally named according to the tissue

where they were first identified, although later they were

found elsewhere. Thus eNOS, a membrane-bound isoform,

was first discovered in the vascular endothelium and has

been later identified not only in vascular endothelial cells

but also in platelets, myocardium, and endocardium.

Neuronal NOS is cytosolic, and is present in skeletal

muscle as well as in the brain, spinal cord, and peripheral

nervous system. The cytosolic inducible NOS isoform is

present in immune cells, vascular smooth muscle, astro-

cytes, fibroblasts, and hepatocytes (for review see Ref. 66).

At present the classification of NOS isoforms as constitutive

and inducible seems imprecise (for review see Ref. 69),

since the constitutive eNOS can be induced in certain

situations, such as during chronic exercise (70) or during

pregnancy (71), whereas iNOS appears to be present

constitutively in some tissues, including human bronchial

epithelium (72), rat kidney (73), and some fetal tissues (74).

The constitutively expressed nNOS and eNOS synthe-

size NO in response to Ca2þ-dependent calmodulin binding.

Thus, stimuli that increase intracellular Ca2þ, such as

acetylcholine, bradykinin, ATP, serotonin, and thrombin,

elicit NO synthesis by nNOS or eNOS within a few seconds.

iNOS is primarily regulated by transcriptional mechanisms

and binds calmodulin irrespective of Ca2þ concentration.

NO Biochemistry. The complex biological chemis-

try of NO and its derivatives, known collectively as reactive

nitrogen species, is discussed in several authoritative

reviews (75–82). Figure 2 summarizes the chemistry of

NO and its derivatives pertinent to cell-physiological

conditions and for which empirical evidence exists.

Although it contains an unpaired electron, NO is a

relatively nonreactive free radical, and many of its

physiological and pathological actions are mediated by its

more aggressive derivatives. Irreversible, diffusion-limited

condensation of NO and �O2
� generates ONOO�. Nitrogen

dioxide radical (�NO2) is produced by direct reaction of NO

Figure 1. Biosynthesis of nitric oxide from L-arginine. NO is produced by five-electron oxidation of the terminal guanidine group of L-arginine.
The NOS reaction requires flavins and tetrahydrobiopterin as cofactors, while the production of NO itself requires O2 and NADPH. The
reductase domain of NOS transfers reducing equivalents from NADPH to the heme domain, where oxidation of L-arginine occurs by a two-step
reaction. First, the NOS flavin accepts an electron from NADPH and transfers it to the heme iron, transforming NOSFe3þ to NOSFe2þ. In this
step, L-arginine is hydroxylated to form an enzyme-bound intermediate, Nx-hydroxyl-L-arginine. Next, the heme iron binds O2 and the enzyme
consumes NADPH to oxidize Nx-hydroxyl-L-arginine to citrulline and NO (66–68).
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with oxygen (Fig. 2) and by decomposition of ONOO�

following its condensation with CO2 and spontaneous

decomposition of the unstable product, ONOOCO2
�.

Protonation of ONOO� generates peroxynitrous acid

(ONOOH), which spontaneously decomposes to the radicals

�NO2 and �OH. In addition, �NO2 reacts with bicarbonate,

yielding carbonate radical (�CO3
�). These derivatives, and to

a limited extent NO itself, chemically modify biomolecules,

including proteins, lipids, and DNA. For example, �NO2 is

sufficiently reactive to nitrate unsaturated carbon-carbon

bonds, for example, in membrane lipids; to abstract

hydrogen from C-H bonds of phenols and thiols (79); and

to nitrate tyrosyl radicals (81, 91). Peroxynitrite and

ONOOH are powerful oxidants and nitrating/nitrosating

agents that can initiate lipid peroxidation cascades (95);

modify and mutate DNA bases (95); produce single- and

double-stranded breaks in DNA (80, 81); deplete cellular

thiols (81); activate enzymes, including matrix metal-

loproteinases (97, 98), poly-ADP ribosyl synthase and

polymerase (80, 81), and sarcoplasmic reticular Ca2þ

ATPase (99); nitrate aromatic compounds, for example,

tyrosyl residues (75, 78, 81); and inactivate mitochondrial

respiratory complexes (91). Biradical reaction of NO with

thiol radicals generates S-nitrosothiols, which react with

sulfhydryls to liberate nitroxyl (HNO) (86). HNO converts

glutathione and other sulfhydryls to sulfanilamide

(RS(O)NH2) derivatives (100, 101). Figure 2 presents only

a few of these myriad modifications, including S-nitrosation

and oxidation of protein thiols, mixed disulfide formation,

tyrosine nitration, and oxidation of the endogenous

antioxidant glutathione. By compromising membrane in-

tegrity, damaging structural and contractile proteins, and

inactivating enzymes, ONOO� and its products can inflict

lethal cellular injury (Fig. 3). Thus, excessive formation of

Figure 2. Biological chemistry of nitric oxide and its derivatives. The chemistry summarized here is limited to reactions supported by empirical
evidence. Circumscribed numbers indicate the following reactions and pathways: 1. Oxidation of NO� by oxyhemoglobin (O2Hb), yielding
methemoglobin (metHb) and nitrate (NO3

�) [75, 83, 84]; 2. Transition metal (M(nþ1))-catalyzed S-nitrosylation of thiols [75, 76]; 3. Liberation of
NO� or nitroxyl (HNO) from S-nitrosothiols (RSNO) with concomitant formation of mixed disulfides (R’SSR) [85, 86]; 4. Oxidation of NO�, yielding
nitrogen dioxide radical (�NO2) [79, 84, 87]; 5. Autoxidation of NO� and �NO2 via formation and hydrolysis of dinitrogen trioxide (N2O3) [82–84],
yielding (6) nitrite (NO2

�) [88, 89]; 7. Nitrosation of sulfhydryls by N2O3 [88–90]; 8.�NO2 oxidation to NO2
� and recycling via (9) peroxidase

activity (POD) and (10) Fenton chemistry [79]; 11. Direct biradical condensation of NO� and thiyl radicals (RS�), forming RSNO [75, 90, 91]; 12.
Biradical condensation of NO� and �O2

�, forming ONOO� [75, 76, 92]; 13. Transition metal-catalyzed ONOO� rearrangement to NO3
� [78, 92];

14. ONOO� detoxification by selenoenzymes, with concomitant oxidation of glutathione (GSH) to glutathione disulfide (GSSG) [77, 78, 92]; 15.
Transition metal-dependent reduction of ONOO� to�NO2 [78]; 16. CO2: ONOO� condensation and spontaneous decomposition of the ONOO�:
CO2 adduct [78, 92–94] to (17) nonreactive products [78, 79] and (18) free radicals [78, 79, 92]; 19. Nitration of tyrosyl radical by �NO2 after
single-electron oxidation of tyrosine by carbonate radical (�CO3

�) [77, 91, 94]; 20. Protonation of ONOO� to its conjugate acid ONOOH [75, 78];
21. Oxidation of aliphatic and aromatic hydrocarbons (RH) by ONOOH [78]; 22. Thiol S-nitrosylation by ONOOH [95], suppressed by
physiological concentrations of CO2 [90]; 23. ONOOH decomposition via the caged [�NO2 �OH] intermediate [78] to (24) a nonreactive product,
NO3

� [78, 79, 84], or (25) the radicals �NO2 and �OH [78, 79]; 26. �OH oxidation of biomolecules, yielding free radical products [78]; 27. Single-
electron oxidation of bicarbonate by �OH, yielding �CO3

� [79]; ONOOH decomposition by reaction with (28) �O2
� [96] or (29) �NO [96].
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NO, which occurs, for example, upon coronary artery

reperfusion, can injure myocardium.

Hypoxia Modulates NOS Activity and
NO Bioavailability

Hypoxia may influence NO production, NO tissue

concentration, and NOS expression by several mechanisms

(Fig. 4): (i) limitation of NO production due to inadequate

NOS substrate O2; (ii) effect of O2 on NOS feedback

inhibition; (iii) modulation of NO bioavailability; (iv)

induction of hypoxia inducible factor (HIF)-1 and other

NOS transcription factors; (v) changes in intracellular Ca2þ

concentration and Ca2þ influx; and (vi) induction of NOS-

regulating heat shock proteins.

Oxygen: a Key NOS Substrate. Studies of the

relationships between O2 concentration and NOS isoform

activities in bovine brain, aortic endothelial cells, and

macrophages yielded apparent Km values of 23.2, 7.7, and

6.3 lM O2 for nNOS, eNOS, and iNOS, respectively (102).

Another study estimated the Km value for nNOS to be as

high as 400 lM O2 (103). Since the Km values of NOS

isoforms are within the normal range of tissue O2

concentration, any reduction of tissue O2 would decrease

NO production (102, 104). Indeed, acute, profound hypoxia

(0.1%–0.2% O2) applied to cell cultures decreased NO

production by all three NOS isoforms by 60%–80% (103,

104). Less severe hypoxia (4.8% O2) (105) suppresses NO

synthesis only moderately, and this effect of hypoxia is

blunted by increased Ca2þ influx, which activates Ca2þ/

Figure 3. ONOO�-dependent detrimental mechanisms. See text for details. eNOS: endothelial nitric oxide synthase (NOS); nNOS: neuronal
NOS; iNOS: inducible NOS; PARP¼ poly-ADP ribosylpolymerase.
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calmodulin-dependent NOS isoforms. In severe hypoxia,

Ca2þ activation of NOS cannot compensate for reduced O2

availability, and NO deficiency may develop (105, 106).

Oxygen Modulates NO Feedback Inhibition of
NOS. NO can bind to NOSFe2þ, forming a heme-NO

complex (NOSFe2þNO), which prevents the heme from

binding O2 and thus increases the apparent Km for O2 (103,

104). By this mechanism, NO feedback inhibits NOS, so the

enzyme usually functions at only a fraction of its catalytic

capacity. During steady state NO synthesis, between ;70%

and 90% of nNOS exists as a ferrous-NO complex (107).

Feedback inhibition of NOS by NO is modulated by O2

concentration, since O2 and NO compete for the heme iron.

Also, the rate of decay of the heme iron-NO complex is

dependent on O2 concentration; as O2 concentration

decreases, less NO is displaced by O2 and NO production

declines (103). As the heme-NO complex subsequently

dissociates and then binds O2, the active enzyme (NOSFe3þ)

is regenerated (107, 108). The sensitivity of the ferrous-NO

complex to O2 influences the overall NOS response to O2. It

is primarily by this mechanism, rather than the effect of O2

as a substrate, that NOS produces NO in proportion to the

O2 concentration across the physiologic range (0–250 lM)

(109).

Oxygen Tension Regulates NO Bioavailabili-
ty. Although O2 is required for NO synthesis, under some

conditions NO concentration has been found to vary

inversely with O2. A large increase in PO2 can lower NO

concentration by oxidizing NO to NO2
� and NO3

�.

Conversely, NO bioavailability may increase as NO

production falls during hypoxia. Heyman et al. (110) found

that interventions known to intensify hypoxia in renal

medulla, such as NOS inhibitors or radiologic contrast

media, paradoxically increased tissue NO in renal cortex.

Other measures known to ameliorate hypoxia, such as

furosemide, L-arginine, and hypotension, reduced NO. The

authors proposed (110) that NO scavenging by oxygen is

reduced or, more likely, NO release from hemoglobin is

increased as PO2 falls, whereas hyperoxemia accelerates NO

removal.

Hypoxia Affects NOS Gene Expression. The

response to chronic hypoxia also involves altered expression

of NOS genes (111, 112). Hypoxia induces transcription

factors such as hypoxia-inducible factors (HIF-1 and HIF-2)

and nuclear factor kappa B (NF-jB) (112). HIF-1 is a

heterodimer consisting of a and b subunits. Constitutively

expressed and O2-independent, HIF-1b can heterodimerize

with other proteins that contain bHLH-PAS domains. HIF-

1a content is exquisitely controlled by intracellular O2

concentration. Under normoxic conditions (FIO2 21%) HIF-

1a is tagged for proteosomal degradation by O2-dependent

proline hydroxylation (33, 113). HIF-1a content and HIF-1

transcriptional activity progressively increase as FIO2

decreases from 21% to 5%, then more sharply as FIO2 falls

below 5%. Within 1 min of reoxygenation, HIF-1 decom-

poses and the HIF-1a subunit is proteolytically degraded.

The rapid dynamics of HIF-1 may be especially important

for adaptation to brief periods of intermittent hypoxia.

HIF-1 regulates genes containing the hypoxia-respon-

sive element (HRE), a cis-acting transcriptional-regulatory

motif that includes one or more binding sites for HIF-1

(112). During hypoxia, HIF-1 activates many target genes,

including those involved in NO synthesis, erythropoiesis,

angiogenesis, glycolysis, and cell proliferation (33, 112). A

HRE has been identified within the iNOS gene (114),

suggesting that iNOS expression could be regulated like

classic oxygen-regulated genes, for example, erythropoietin

(115). nNOS mRNA accumulation has been observed after

hypoxia in vivo (116, 117). This increase may involve a

general cellular stress response, leading to increased nNOS

gene transcription, or direct activation of nNOS tran-

scription through binding of HIF-1 (118). HRE motifs have

been detected in the nNOS genomic sequence, but their

functionality is not yet known (119). Gess et al. (120)

demonstrated that hypoxia increased eNOS mRNA in all

investigated organs and suggested the existence of a HRE in

the eNOS gene, which would mediate eNOS gene

regulation by hypoxia in a fashion similar to that of the

erythropoietin gene. More recently, Coulet et al. (121)

showed that human eNOS is a hypoxia-inducible gene,

whose transcription is stimulated through HIF-2 interaction

with two contiguous sites located at�5375 to�5366 of the

human eNOS promoter.

A transcription factor for a variety of genes (122, 123),

NF-jB may contribute to hypoxic induction of iNOS gene

expression. During adaptation to intermittent hypoxia, NF-

jB may be activated by reactive oxygen species generated

during alternating hypoxia and reoxygenation (123). How-

ever, the contribution of NF-jB to the increased NO

production during intermittent hypoxia has not been

determined.

Although hypoxia causes pulmonary hypertension, it is

interesting to note that hypoxia stimulates NOS expression

in pulmonary vessels. Toporsian et al. (124) observed an

increase in pulmonary eNOS gene expression after 12-hr

hypoxia in rats. eNOS expression increased above baseline

in pulmonary arterioles already expressing the gene, and the

fraction of arterioles newly expressing eNOS began to

increase after 1 day of hypoxia; eNOS expression continued

to increase for several days before stabilizing. Other

investigators also reported accumulation of rat lung nNOS

and eNOS mRNA after prolonged hypoxia (125–127).

The eNOS-inducing effect of hypoxia in lungs and

pulmonary circulation may be simulated by metabolic

alteration of redox state. Hypoxia led to an increase in the

cellular NAD(P)H/NAD(P)þ ratio, which augmented acti-

vation of eNOS transcription by AP-1, a redox-sensitive

transcription factor. In this process, hypoxia increased

eNOS mRNA transcription in a manner inversely propor-

tional to PO2 (128). This increase in pulmonary eNOS

expression may reflect an adaptive response to blunt

hypoxia-induced pulmonary vasoconstriction. However,
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this notion contradicts the decline in pulmonary endothelial

NO production observed in the same model by Shaul et al.

(126) following prolonged hypoxia. Shaul et al. (126)

suggested that diminished availability of NOS cofactors

during hypoxia limited NO production despite increased

NOS expression. Other studies demonstrated hypoxic

down-regulation of eNOS expression in pulmonary endo-

thelial cells (117). Hypoxia reduced eNOS mRNA and/or

protein in human (129), porcine (130), and bovine (131)

pulmonary artery endothelial cells. These hypoxia effects

were presumably due to both decreased transcription and

destabilization of eNOS mRNA (131).

In nonpulmonary endothelial cells, the findings are also

controversial. Increased eNOS mRNA and protein contents

were observed in bovine aortic endothelial cells incubated

with 1% O2 (132), in cerebral blood vessels during ischemia

(133), and in hypoxic human renal proximal tubules (134).

Other reports, however, demonstrated reduced eNOS

expression in human umbilical vein and bovine aortic

endothelial cells exposed to low PO2 (135, 136). Reduced

Figure 4. NO-dependent mechanisms in protective effects of adaptation to hypoxia. See text for details. NOS¼NO synthase; iNOS¼ inducible
NOS; eNOS¼endothelial NOS; SOD¼ superoxide dismutase; GS¼glutathione; HSP¼heat shock protein; HIF-1¼ hypoxia-inducible factor 1;
ROS¼ reactive oxygen species; PG¼ prostaglandins; VEGF¼ vascular endothelium growth factor.
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eNOS expression resulted from decreased eNOS mRNA

stability and eNOS promoter activity (135).

Post-translational regulation of iNOS by prolonged

hypoxia was demonstrated in murine macrophages (137), in

which 24-hr exposure to hypoxia (PO2 23 6 1.4 mm Hg)

lowered iNOS activity but did not affect iNOS protein

content. In these cells, hypoxia disrupted interactions of

iNOS with the cytoskeletal protein a-actinin 4, causing

iNOS displacement from the submembranal regions, a

location which may be important for normal iNOS activity.

Hypoxia Affects NOS Activity and Expression
by Altering Intracellular Ca2þ. Luckhoff and Busse

(138) found a close positive correlation between increases in

intracellular Ca2þ and NO formation in endothelial cells

exposed to hypoxia. Hampl et al. (105) showed that after 10

min moderate hypoxia (4.8% O2), Ca2þ began to enter the

cells and activated eNOS. However, more prolonged

hypoxia terminated the Ca2þ entry and decreased NO

synthesis. The Ca2þ-dependent mechanism of hypoxia-

enhancement of NO production may involve both NOS

activation and expression of genes regulated by Ca2þ influx

through plasma membrane L-type Ca2þ-channels (139). In

this process, temporal dynamics of Ca2þ transients are more

important for gene expression than the steady-state Ca2þ

concentration (140). In PC12 cells exposed to 60 cycles of

30 secs 1.5% O2/4 mins 20% O2, HIF-1a protein increased

3-fold. A Ca2þ-activated mechanism involving calmodulin-

dependent protein kinase appeared to stabilize HIF-1a,

which in turn increased HIF-1 transcriptional activation of

the iNOS gene (141). Thus, hypoxia-induced Ca2þ influx

activates eNOS and induces iNOS expression.

Hypoxia Induces NOS-Regulating Heat Shock
Proteins. Hypoxia induces a spectrum of heat shock

proteins (HSPs), including HSP27 (142), HSP32 (143),

HSP70 (63, 142, 144), and HSP90 (145). Association of

HSP90 with eNOS activates NO production (146, 147) and,

importantly, limits �O2
� generation by uncoupled eNOS

(148, 149). Furthermore, HSP90 activates nNOS as well as

eNOS (150). In contrast, induction of HSP70 may suppress

NO production by nuclear accumulation of the p65 subunit

of NF-jB (151, 152). Thus, hypoxia-induced HSPs can

either increase or decrease NO production.

Cardio- and Vasoprotective Functions of NO

The role of NO in cardiovascular injury and cardio- and

vasoprotection remains controversial. Both NO donors and

NOS inhibitors have been reported to protect against

myocardial ischemia/reperfusion (IR) injury (60, 153–

170). NO may protect myocardium by increasing coronary

flow (171–173), decreasing neutrophil accumulation (174),

maintaining endothelial function (175), preserving calcium

sensitivity and contractile function without increasing

energy demand (176), and reducing myocardial oxygen

consumption (177, 178), although the relative importance of

these protective mechanisms is unclear (179). Paradoxically,

inhibition of NOS ameliorated myocardial ischemia-reper-

fusion injury by mimicking ischemic preconditioning (155),

blunting ONOO� formation (180), and suppressing nitro-

sative injury by NO derivatives (153, 180). The NO

cardioprotection controversy is exemplified by two recent

reports in genetically modified mice. Flogel et al. (157)

reported that postischemic recoveries of phosphocreatine

and left ventricular developed pressure were enhanced in

hearts of eNOS-deficient versus wild-type mice. Con-

versely, Brunner et al. (181) reported that myocardium of

transgenic mice overexpressing eNOS was more resistant to

IR injury than that of wild-type mice.

Bolli’s analysis of the literature in 2001 (158) found

that of 92 studies which examined the impact of NO on IR

injury in nonpreconditioned myocardium, 73% concluded

that endogenous or exogenous NO was cardioprotective,

and only 12% reported a detrimental effect of NO. The

proportion of studies showing a protective effect of NO was

similar for in vivo and in vitro studies. It remains a challenge

to explain why some studies found detrimental effects of

NO. A reasonable explanation is that NO effects are

concentration-dependent. The NOS inhibitor L-NMMA,

which dose-dependently reduced NO release into coronary

venous effluent, revealed NO’s dual character in myocardial

IR injury; thus, low doses of L-NMMA improved

postischemic recovery of left ventricular contractile per-

formance and myocardial ATP content and decreased

myocardial creatine kinase release during reperfusion

(163, 180). In contrast, higher doses of L-NMMA, which

caused coronary vasoconstriction, had adverse effects.

Coadministration of NOS substrate L-arginine abolished

the diverse effects of L-NMMA (155).

It appears that there is an optimal concentration of NO

for protection: too little or too much may be detrimental.

Although many studies with NOS inhibitors demonstrate

that NO is essential for cardiovascular protection (163, 181–

183), these studies do not exclude the possibility that

excessive NO is harmful. NO overproduction may result

from increased iNOS in macrophages and/or vascular

smooth muscle cells or excessive activation of eNOS in

coronary, cerebral, and peripheral vascular endothelium

(184–188).

Acute hypotension is an important consequence of NO

overproduction in septic (189), anaphylactic (190), heat

(191, 192), hemorrhagic (193), and cardiogenic (187, 194,

195) shock. Both iNOS and eNOS have been implicated in

this hypotension. Preferential inhibition of iNOS with

nonvasoactive low doses of NO inhibitors limited the fall

of blood pressure in septic shock (196) and heat stroke

(197). Complete inhibition of NO production induced a

considerable increase in blood pressure but failed to

improve survival of rats in heat stroke (197). Other authors

observed increased mortality of rats exposed to septic shock

after NOS inhibition (196–199) due to myocardial ischemia,

microvascular thrombosis, and disturbed antimicrobial

defense (198) and a direct cardiotoxic effect (199–201).
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Increased levels of NO were detected in both plasma (202)

and aorta (187, 203) of rats subjected to heat stroke or acute

myocardial infarction. This NO overproduction was accom-

panied by excessive endothelium-dependent relaxation of

isolated blood vessels (203, 204), which inversely correlated

with blood pressure (205). These studies support an

important contribution of eNOS to NO- induced acute

hypotension.

The relative contributions of iNOS and eNOS to NO

overproduction have also been studied in rats subjected to

acute heat stress (206). In these experiments, heat stress

induced NO overproduction in the heart, liver, kidneys,

spleen, brain, and small intestine, detected by electron

paramagnetic resonance. Cycloheximide, an inhibitor of

protein synthesis, reduced heat stress–induced NO produc-

tion in liver by 73%. Since iNOS is virtually absent from

hepatocytes under normal conditions, this result demon-

strated a large contribution of de novo synthesized iNOS to

NO overproduction in heat stress.

The major mechanism by which excessive NO

promotes cell injury likely involves the reaction of NO

with �O2
� to generate cytotoxic ONOO� (Fig. 2). The

potential for ONOO� toxicity is greatest when NO and �O2
�

are produced in roughly equal amounts in the same location

(96). Excess amounts of either precursor can decompose

ONOOH by thermodynamically feasible reactions (Fig. 2:

reactions 28, 29; Refs. 96, 207). Also, NO can impair the

function of essential proteins by nitrosylating iron-sulfur

clusters and thiol residues. NO itself is a poor nitrosylating

agent, but will readily react with sulfhydryl radicals

generated by one-electron thiol oxidations (101) or with

sulfhydryls following its conversion to more aggressive

reactive nitrogen species (86). The resulting inhibition of

key enzymes of the tricarboxylic acid cycle and the

mitochondrial respiratory chain, disruption of mitochondrial

calcium metabolism, or damage to DNA may result in cell

death by apoptosis and/or necrosis through activation of

poly(ADP-ribose)polymerase (Fig. 3) and subsequent in-

hibition of glycolysis and depletion of ATP (208).

Pharmacological inhibition of poly(ADP-ribose)polymerase

is considered a promising approach in the treatment of

pathologies involving NO overproduction (209).

Adaptation to Hypoxia Limits NO Overproduc-
tion and Corrects NO Deficiency. NO overproduction

in rats contributed to detrimental effects of acute, severe

hypobaric hypoxia produced by a simulated altitude of

11,000 m in rats (63). In this study, inhibition of NOS or

trapping of NO prolonged survival during subsequent

hypoxic exposure. When rats were conditioned by an 8-

day program of intermittent hypoxia and then subjected to

acute, severe hypoxia, NO overproduction in the brain was

prevented, and survival of these adapted rats was markedly

increased. This protection appeared to be due to a moderate

increase in NO synthesis during adaptation to hypoxia, since

inhibition of NOS during adaptation abolished the protec-

tion.

Intermittent hypoxia may also protect in conditions of

NO deficiency. Endothelial dysfunction often results in

increased vascular tone and hypertension (210), and

impaired vascular smooth muscle relaxation is associated

with NO deficiency, as evident from abnormally low plasma

concentrations and urinary excretion of the stable NO

metabolites, nitrite and nitrate (50, 211, 212). The NO

deficiency may be due to reduced synthesis by eNOS (213)

or increased NO oxidation or trapping by free radicals (214).

When stroke-prone, spontaneously hypertensive (SHRSP)

rats were conditioned by hypobaric hypoxia beginning at

the onset of hypertension (at age 5–6 weeks), the develop-

ment of hypertension was slowed. This antihypertensive

effect was associated with stimulation of endothelial NO

synthesis, indicated by increased urinary NO2
� þ NO3

�

excretion, and was also evident in isolated blood vessels

(50). These antihypertensive and vasoprotective effects of

hypoxic adaptation were mimicked by the NOS-stimulating,

b-adrenergic antagonist nebivolol (215). Compared to the

b1-selective antagonist metoprolol, Buval’tsev et al. (216,

217) found that nebivolol was a more potent antihyperten-

sive agent and also prevented endothelial dysfunction,

myocardial hypertrophy, and vascular remodeling in

SHRSP rats.

Intermittent Hypoxia Adaptations Prevent En-
dothelial Dysfunction and IR Injury by NO-Related
Mechanisms. Adaptation of rats to intermittent hypo-

baric hypoxia stimulated NO production as indicated by

doubled plasma concentrations of nitrite and nitrate (50). In

this study, hypoxic adaptation dampened the acute fall of

blood pressure and excessive endothelium-dependent relax-

ation associated with myocardial infarction. Daily admin-

istration of a NOS inhibitor during adaptation to hypoxia

abolished this protection (218, 219), whereas the NO donor,

dinitrosyl iron complex (DNIC), mimicked the beneficial

effects of adaptation to hypoxia (219, 220).

The cardioprotective effects of hypoxia adaptation and

ischemic preconditioning are similar, in that in both cases

subsequent ischemic injury and ischemia-induced arrhyth-

mias are reduced (5, 168, 221, 222). Thus, both of these

cardioprotective interventions may activate some of the

same defense mechanisms. Indeed, Neckář et al. found that

the cardioprotective effects of prolonged, intermittent

hypoxia and ischemic preconditioning were not additive

(223). This finding indicates that the mechanisms of

hypoxia- and preconditioning-induced protection share

some common signaling pathways. Such important experi-

ments have not yet been done in animals adapted to

intermittent hypoxia.

Nitric oxide appears to contribute to both the acute and

delayed phases of cardioprotection induced by ischemic

preconditioning (222). Conceivably, hypoxia-evoked NO

protects hypoxia-adapted myocardium by mechanisms

similar to those activated by ischemic preconditioning.

However, important differences between the stresses of

ischemic preconditioning and hypoxia adaptation should be
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noted. The ischemic preconditioning insult itself may inflict

injury to activate constitutive defense mechanisms and

expression of protective proteins. In contrast, neither a

single session nor a complete course of adaptation to

hypoxia is associated with myocardial injury, so the

‘‘structural cost’’ of hypoxia is much lower than for

ischemia (2, 3). In addition, adaptation to hypoxia produces

more sustained protection than ischemic preconditioning.

The beneficial effects of ischemic preconditioning subside

after 3–4 days (224, 225), but protection against ischemia-

induced myocardial infarction persisted for at least 35 days

after adaptation of rats to intermittent high-altitude hypoxia

(5).

In studies of adaptation to intermittent hypoxia, the

hypoxic stress is usually considered to be the factor

responsible for stimulating cardioprotection. However, the

reoxygenation phase may be crucial to the adaptative

process. Milano et al. (226, 227) tested the hypothesis that

repeated, brief reoxygenation episodes during prolonged

hypoxia would improve myocardial tolerance to a more

severe hypoxic insult. Hearts were isolated from rats

conditioned by 14 days hypoxia and sequentially perfused

with hypoxic, then hyperoxic, media. Contractile perform-

ance during hyperoxia was better maintained in hearts

isolated from rats that had been reoxygenated for 1 hr/day

throughout the adaptation program.

Although NO plays a role in cardioprotection afforded

by both continuous and intermittent hypoxia adaptation

(221), the effects of these adaptive processes on NO

metabolism differ. Continuous hypoxia increased eNOS

expression and basal NO production by eNOS, but iNOS

remained undetectable (228). Acute inhibition of NOS

abolished cardioprotection evoked by continuous hypoxia in

neonatal rabbits (25, 229), whereas administration of the

NO donor, S-nitrosoglutathione, mimicked the protection

(25). In contrast, intermittent hypoxia induced by repeated

hypobaric exposures increased myocardial iNOS content

and reduced expression of eNOS (230–232). Kolář et al.
(231) reported that inhibition of NOS had an antiarrhythmic

effect in nonadapted but not in hypoxia-adapted hearts,

suggesting that hypoxic adaptation suppressed arrhythmias

by blunting excess NO production during ischemia and

reperfusion. Moreover, S-nitrosoglutathione completely

abolished the antiarrhythmic effect of intermittent hypoxia.

Collectively, these results indicate that excessive NO

production during ischemia is arrhythmogenic.

Some studies have demonstrated that delayed cardio-

protection observed 24 hrs after ischemic preconditioning

resulted from upregulation of iNOS (233). Ding et al. (168)

reported improved postischemic function of hearts from rats

adapted to hypobaric, intermittent hypoxia, compared to

nonadapted control hearts. Preischemic NO2
� þ NO3

�

content was higher in adapted hearts. The iNOS-selective

inhibitor, aminoguanidine, suppressed protective effects of

intermittent hypoxia. NO2
�þ NO3

� content increased after

30 mins ischemia in control but not in hypoxia-adapted

hearts. Relative to preischemia, iNOS mRNA increased

after reperfusion in nonadapted hearts but decreased in

adapted hearts. Thus, adaptation to intermittent hypoxia

may have prevented a burst of iNOS activity and cytotoxic

NO overproduction during the initial phase of reperfusion.

Delayed cardioprotection by NO derived from iNOS

can result from ischemic preconditioning, heat stress,

cardiac pacing, or administration of exogenous compounds

(234). For instance, endotoxin in sublethal doses limited IR

arrhythmias and myocardial necrosis (235). A synthetic

endotoxin derivative, monophosphoryl lipid A, was sim-

ilarly cardioprotective (236). Muller et al. (185) cited the

induction of adaptive mechanisms such as antioxidant

enzymes and heat shock proteins in the heart and the

formation of releasable NO stores in blood vessels as

examples of long-term benefits of iNOS induction.

Although there are numerous reports of hypoxia-

induced cardioprotection in rats and other small mammals,

Zong et al. (3) reported the first evidence of such protection

in a large mammal model of IR. In dogs adapted to

intermittent normobaric hypoxia, less than 2% of the

ischemic myocardium was infarcted following 60 mins

coronary artery occlusion and 5 hrs reperfusion, a protocol

that infarcted about 35% of the ischemic territory in

nonadapted dogs. Also, life-threatening arrhythmias were

absent in the adapted dogs, while ventricular tachycardia

and/or fibrillation occurred in over half of the nonadapted

dogs (3). In similarly adapted dogs, this group found that

myocardial eNOS content and NOS activity were reduced

significantly (188). The investigators suggested decreased

eNOS may protect myocardium of adapted dogs from

excessive NO formation upon reperfusion.

It seems evident that adaptation to intermittent hypoxia

produces a broad spectrum of cardio- and vasoprotective

effects, related to the ability of hypoxia and reoxygenation

to modulate NO metabolism (Fig. 4). The salutary

mechanisms involving hypoxic modulation of NO metab-

olism are not yet fully understood. Below we describe some

of the possible pathways leading to such protection.

Mechanisms of NO-Dependent Protection Evoked
by Adaptation to Intermittent Hypoxia

Alternative Sources of NO in Adaptation to
Hypoxia. NO binding by certain proteins buffers excess

free NO and generates NO stores, which can gradually

release NO and therefore serve as a nonenzymic source of

free NO (237). Although often undetectable in basal

conditions, NO stores form in response to increased NO

concentration, whether from increased NOS activity or from

administration of exogenous NO donors (238). S-nitro-

sothiols and DNIC are two major forms of NO storage and

transport in mammals (Fig. 5). Exchange of NO between

these two classes of compounds depends on the intracellular

contents of iron, low molecular weight thiols, and NO. S-

nitrosothiols and DNICs exist in proteins and in soluble
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thiol ligands, such as cysteine or glutathione. Protein-bound

complexes are more stable than low molecular weight NO

adducts and are regarded as the principal intracellular NO

stores (237).

Nitric oxide stores in blood vessels have been detected

by electron paramagnetic resonance spectroscopy (239),

histochemical staining for bivalent iron (240), immuno-

staining for S-nitrosated cysteine (241), and photorelaxation

responses of isolated blood vessels (242). A facile method

for detecting NO stores in the vascular wall is the reaction of

N-acetylcysteine or diethyldithiocarbamate with DNIC and

S-nitrosothiols, which releases NO and induces vasodilation

in proportion to the size of the NO stores (243, 244). NO

storage positively correlates with plasma levels of nitrite and

nitrate (245), and chronic administration of DNIC expanded

NO stores in rats, whereas chronic NOS inhibition

decreased stores (246). Efficiency of NO storage or potential

capacity to store NO can be assessed by incubation of an

isolated blood vessel with excess NO (26).

Adaptation to intermittent hypoxia results in a pro-

gressive increase in NO stores. This may be an adaptive

mechanism that protects the cardiovascular system from the

harmful effects of excessive NO synthesized during

repeated exposure to hypoxia. On the other hand, as

nonenzymic NO sources, NO stores may compensate for

decreased production of NO by endothelial cells, or

feedback-inhibit NO overproduction. Smirin et al. (218)

reported that prevention of NO storage in the vascular wall

abolished hypoxia-mediated protection against NO over-

production, while augmentation of NO stores by a NO

donor mimicked this protection. Chronic treatment of rats

with the antioxidant N-acetylcysteine, which depletes NO

stores (247, 248), blunts the improvement in myocardial

resistance to injury effected by adaptation to hypoxia (249).

Efficiency of NO storage is genetically predetermined

and is apparently related to the inherited capacity for NO

synthesis. Adaptation to hypoxia increased total NO

production to a similar extent in SHRSP and normotensive

Wistar-Kyoto rats, but the size of NO stores was much less

in SHRSP than in Wistar-Kyoto rats (26). Since more NO

remained unbound in SHRSP rats, adaptation to hypoxia

had a pronounced depressor effect compared to Wistar-

Kyoto rats. However, the lack of compensatory increase in

NO storage capacity in SHRSP rats may exacerbate

endothelial injury and dysfunction due to NO overproduc-

tion by iNOS in macrophages and vascular smooth muscle

(250).

Hemoglobin can bind NO and provide additional NO

stores. Although NO is rapidly oxidized by oxygenated

hemoglobin, NO reacts with deoxygenated heme groups to

form bHbFe2þNO in the venous circulation and with 93cys

residues of the Hb b-chain to form S-nitrosohemoglobin

(SNO-Hb) (251). SNO-Hb may be an important source of

bioactive NO in hypoxic conditions, since as PO2 falls

below 6 mm Hg, NO is released from 93cys residues in

sufficient quantity to dilate vessels (252, 253). However, the

functional relevance of this mechanism for controlling blood

flow has been challenged. At physiological PO2, SNO-Hb

formation is negligible and irreversible NO oxidation

prevails (254). Moreover, SNO-Hb is unstable in red cells

(255). Several diffusion barriers exist between the sites of

NO formation and hemoglobin, including the red cell

membrane (256, 257), the unstirred layer surrounding the

red cell (258), and an erythrocyte-free zone of plasma along

the surface of vascular endothelium (259). These barriers are

estimated to decrease the rate of NO scavenging by

intraerythrocytic hemoglobin 500- to 1000-fold (256, 260).

Nitrite represents an important circulating and tissue

storage form of NO, since NO2
� can be recycled to bioactive

NO by intravascular and tissue nitrite reductases when the

partial pressure of oxygen decreases. NO2
� ions are reduced

to NO by electron-donor systems with the participation of

NADH, NADPH, flavoproteins, and either cytochrome

oxidase in mitochondria, cytochrome P-450 in endoplasmic

reticulum, or deoxyhemoglobin in red cells (260–262).

Reduction of NO2
� to NO has been documented in vascular

smooth muscle (263), endothelium (264), and ischemic

myocardium (265). Nitrite reductase reactions increase in

hypoxic conditions (266); indeed, nitrite reduction by

hemoglobin is a major source of NO during hypoxia.

Because the rate of NO generation from NO2
� is linearly

dependent on reductions in PO2 and pH, NO2
� could be

reduced to NO and protect ischemic tissue. Accordingly,

NO2
� administered 5 mins before reperfusion reduced

cardiac infarct size by 67% in mice subjected to coronary

artery occlusion (267). In another recent study, orally

administered NO2
� was transformed to NO and attenuated

hypertension in a dose-dependent manner (268). Thus, the

NO2
� reduction pathway can provide an alternative means

of NO generation that might be therapeutically useful.

NO-Dependent Vasodilation and Protection
Against Ca Overload. Soluble guanylate cyclase is a

principal target of NO, which binds to the cyclase’s heme

moiety to activate the enzyme and increase synthesis of

cyclic GMP (cGMP; Ref. 269). cGMP-dependent protein

kinases phosphorylate several target regulatory proteins and

modulate ion channel function to produce physiological

responses (269, 270), including the well-known vaso-

dilatory effects of NO. Moreover, cGMP-dependent path-

ways have been implicated in protective effects of NO (167,

271). Increased activation of KATP channels was demon-

strated in chronically hypoxic rabbit hearts (272). The

authors suggested that hypoxia-induced NO production

activated cGMP-dependent protein kinase, which in turn

phosphorylated and activated KATP channels. The resulting

potassium efflux and hyperpolarization of the perfused heart

decreased Ca2þ influx through L-type channels and thereby

conferred tolerance to subsequent ischemia (25).

Clinically, the importance of NO deficiency in develop-

ment and progression of essential hypertension was implied

by a strong inverse correlation between NO production and

blood pressure (273, 274). Intermittent hypobaric hypoxia
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lowered blood pressure and prevented endothelial dysfunc-

tion by increasing NO production in hypertensive patients

(273).

Recent studies suggested that the increased NO

production resulting from elevated endothelial cell [Ca2þ]

(275) following prolonged hypoxic exposures blunted

subsequent vasoconstriction by decreasing intracellular

[Ca2þ] (276, 277) and myofilament Ca2þ sensitivity in

vascular smooth muscle (278, 279). NOS inhibition

prevented hypoxic attenuation of vasoconstriction (275).

Adaptive increases in NO synthesis may help prevent

calcium overload under pathological conditions by enhanc-

ing sarcoplasmic reticular (SR) Ca2þ sequestration (280,

281). Adaptation of rats to intermittent hypobaric hypoxia

increases SR Ca2þ ATPase activity in myocardium by

increasing the Ca2þ sensitivity of the ATPase and the Vmax

for Ca2þ transport; indeed, NO-induced cardioprotection

against Ca2þ overload in rats paralleled NO induction of SR

Ca2þ ATPase gene expression (282). Recent evidence

indicates that ONOO� mediates NO-activation of the Ca2þ

pump in vascular smooth muscle and cardiomyocytes by

inducing S-glutathiolation of a regulatory cysteine residue

(99); by enhancing intracellular Ca2þ sequestration, this

physiological action of ONOO� could protect cells from

Figure 5. Nitric oxide stores: S-nitrosothiols (RS-NO), high molecular weight dinitrosyl iron complexes (DNIC) and low molecular weight DNIC.
RS-NO and DNIC exist in two forms: bound to protein sulfhydryl groups (high molecular weight forms), and bound to low molecular weight thiols,
particularly cysteine or glutathione. Protein complexes are much more stable than low molecular weight ones and thus are regarded as
intracellular NO stores. At low concentrations of low molecular weight thiols, protein-bound DNIC is stable, while at high local concentrations of
low molecular weight thiols, protein-bound DNIC can represent a reservoir of biologically active NO. Biological activity of DNIC is attributed to
the release of free NO, to the transfer of NO to protein cysteine residues, or to Feþ(NOþ)2 groups, which possess a high affinity to protein dithiols,
to form high molecular weight DNIC. RS-NO and DNIC are interconvertible, depending on intracellular amounts of Fe2þ, low molecular weight
thiols and NO. Apparently RS-NO performs as the major intercellular transport form of NO. Upon encountering high concentrations of non-heme
iron and thiols, RS-NO initiates the formation of DNIC, which degrades to release NO. Thus, NO-containing complexes form a dynamic system
of biologically active NO stores, in which NO continuously exchanges between free and bound forms (237, 238).
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Ca2þ overload. Moreover, hypoxia adaptation makes the SR

Ca2þ pump more resistant to oxidative damage (283, 284).

Increased resistance of the sarcolemmal Naþ, Kþ ATPase to

oxidative stress may also contribute importantly to inter-

mittent hypoxia protection against Ca2þ overload (284). Xu

et al. (285) showed that NO protected this ATPase by

scavenging toxic free radicals. Therefore activation of NO-

dependent mechanisms by adaptation to hypoxia may

protect cells against Ca2þ overload by both decreasing

Ca2þ entry and increasing Ca2þ removal and sequestration.

NO-Dependent Induction of Protective
Factors. In addition to rapid mechanisms of NO signaling

based on post-translational modifications of preexisting

proteins, NO can modulate gene expression. This adaptive

long-term regulation occurs primarily at the level of mRNA

transcription and is controlled by transcription factors (286).

There is some overlap between NO- and hypoxia-

induced gene regulation, due at least in part to cross talk

between NO and HIF-1a (286). In normoxic conditions NO

can induce HIF-1a accumulation by activating its tran-

scription and translation, thereby mimicking hypoxia (287,

288). Transcriptional activation may be initiated by NO-

mediated nitrosation of Ras. NO has also been shown to

directly enhance HIF activity by nitrosating a cysteine

residue in the C-terminal transactivation domain of HIF-1a
(289). Other studies suggested that NO upregulated HIF-1

through the PI3K/Akt pathway (290, 291), and this effect

was independent of soluble guanylate cyclase activity (290).

In hypoxia, NO prevents accumulation of HIF-1a, its

association with HIF-1b, and target gene activation (287).

The underlying mechanism is NO-dependent activation of

prolyl hydroxylase (292) or blockade of electron flow at

complex I of the respiratory chain (293). The similar actions

of NO and hypoxia on transcriptional activation may help

explain why treatment of rats with a NO donor (63, 219,

294) or NOS stimulator (216, 295) mimicked protective

effects of adaptation to intermittent hypoxia. Thus, NO

administration during hypoxia may be detrimental because it

hampers accumulation of HIF-1, whereas during normoxia

NO mimics the effect of hypoxia and is protective.

Exogenous NO is reported to either suppress or activate

expression of the hypoxia-inducible gene VEGF, depending

on the redox status of the cell system (286). Endogenous

NO induces VEGF synthesis in various cell types, including

macrophages, vascular smooth muscle cells (296), and

keratinocytes (297). NO enhances VEGF expression by

activating Akt kinase, followed by induction of several

transcription factors, of which stabilization of hypoxia-

inducible factor (HIF-1) is the critical step (298). Enhance-

ment of VEGF expression is another example of NO

mimicking hypoxia, the conventional activator of HIF-1 and

VEGF synthesis (299).

Another NO-responsive transcription factor is heat

shock factor 1, which activates expression of HSP70 and

HSP32 (heme oxygenase-1) (300). NO increased expression

of both of these protective HSPs (156, 300, 301). HSP70

protects cells from ischemia (302), apoptosis (303, 304), and

necrosis (305) and blocks proinflammatory processes (151).

HSP32 generates the vasoactive molecule carbon monoxide

and the potent antioxidant bilirubin and thus enhances

protection against oxidative injury (306). HSP32 promotes

cardiac xenograft survival (307), protects against oxidative

damage (308), and increases resistance to hyperoxia (309).

In addition, NO enhancement of VEGF production and

release is also mediated by HSP32 (37).

The hypothesis that HSP70 mediates the protective role

of NO in adaptation to intermittent hypoxia was verified by

studying the effect of NOS inhibition on HSP70 accumu-

lation and hypoxia-induced protection. A program of mild

hypobaric hypoxia (5,000 m; 10–30 mins daily for 8 days)

induced pronounced HSP70 accumulation in rat organs and

increased the survival time of rats during subsequent, more

severe hypoxia (simulated altitude of 11,000 m). The NOS

inhibitor L-NNA completely abolished both the accumu-

lation of HSP70 and the development of hypoxia resistance.

These results suggested that intermittent hypoxia evokes

NO-dependent activation of HSP70 synthesis and strength-

ens resistance against hypoxia stress (63, 219).

In addition to induction of protective HSPs, hypoxia-

induced NO production can also mobilize other essential

systems of self-defense. NO stimulated synthesis of

cytoprotective prostaglandins PGE2 and PGI2 through

activation of cyclooxygenases (27, 310, 311). NO may

contribute to hypoxic enhancement of antioxidative de-

fenses (284), including synthesis of the antioxidants

glutathione (306) and superoxide dismutase (312). Finally,

NO was proposed to block apoptosis by blunting caspase

activation (313) or by activating cytoprotective proteins

such as Bcl-xL (314), cAMP response element binding

protein (315), or heme oxygenase-1 (316).

In summary, NO-dependent protective mechanisms of

adaptation to intermittent hypoxia are based on moderate

stimulation of NO synthesis and restriction of NO over-

production directly or through negative feedback by NO

originating from NOS and alternative sources. The adaptive

enhancement of NO synthesis and/or availability activates

or increases expression of other protective factors, which

makes the protection more robust and sustained. Under-

standing mechanisms of adaptation to hypoxia will support

development of therapies to prevent and treat hypoxic or

ischemic damage to organs and cells and to increase

adaptive capabilities of the organism. In this respect

strategic modulation of NO metabolism is of specific

interest.
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80. Szabó C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett

140–141:105–112, 2003.

81. Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in

myocardial ischaemia-reperfusion injury and preconditioning. Br J

Pharmacol 138:532–543, 2003.

82. Postovit L-M, Sullivan R, Adams MA, Graham CH. Nitric oxide

signaling and cellular adaptations to changes in oxygenation.

Toxicology 208:235–248, 2005.

83. Koppenol WH. The basic chemistry of nitrogen monoxide and

peroxynitrite. Free Radic Biol Med 25:385–391, 1998.

84. Costa NJ, Dahm CC, Hurrell F, Taylor ER, Murphy MP. Interactions

of mitochondrial thiols with nitric oxide. Antioxid Redox Signal 5:

291–305, 2003.

85. Gaston B. Nitric oxide and thiol groups. Biochim Biophys Acta 1411:

323–333, 1999.

86. Wong PS-Y, Hyun J, Fukuto JM, Shirota FN, DeMaster EG, Shoeman

DW, Nagasawa HT. Reaction between S-nitrosothiols and thiols:

generation of nitroxyl (HNO) and subsequent chemistry. Biochemistry

37:5362–5371, 1998.

87. Wink DA, Nims RW, Darbyshire JF, Christodoulou D, Hanbauer I,

Cox GW, Laval F, Laval J, Cook JA, Krishna MC, DeGraff WG,

Mitchell JB. Reaction kinetics for nitrosation of cysteine and

glutathione in aerobic nitric oxide solutions at neutral pH. Insights

into the fate and physiological effects of intermediates generated in the

NO/O2 reaction. Chem Res Toxicol 7:519–525, 1994.

88. Tarpey MM, Wink DA, Grisham MB. Methods for detection of

reactive metabolites of oxygen and nitrogen: in vitro and in vivo

considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–

R444, 2004.

89. Schrammel A, Gorren ACF, Schmidt K, Pfeiffer S, Mayer B. S-

nitrosation of glutathione by nitric oxide, peroxynitrite, and �NO/O2
�-.

Free Radic Biol Med 34:1078–1088, 2003.

90. Hogg N. Biological chemistry and clinical potential of S-nitrosothiols.

Free Radic Biol Med 28:1478–1486, 2000.

91. Brown GC, Borutaite V. Inhibition of mitochondrial respiratory

complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim

Biophys Acta 1658:44–49, 2004.

92. Arteel GE, Briviba K, Sies H. Protection against peroxynitrite. FEBS

Lett 445:226–230, 1999.

93. Gow A, Duran D, Thom SR, Ischiropoulos H. Carbon dioxide

enhancement of peroxynitrite-mediated protein tyrosine nitration.

Arch Biochem Biophys 333:42–48, 1996.

94. Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: the

roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol

Med 25:392–403, 1998.

95. Ferdinandy P, Schulz R. Inhibition of peroxynitrite-induced dityrosine

formation with oxidized and reduced thiols, nitric oxide donors, and

purine derivatives. Antioxid Redox Signal 3:165–171, 2001.

96. Miles AM, Bohle DS, Glassbrenner PA, Hanser B, Wink DA,

Grisham MB. Modulation of superoxide-dependent oxidation and

hydroxylation reactions by nitric oxide. J Biol Chem 271:40–47,

1996.

97. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda

H. Activation of matrix metalloproteinases by peroxynitrite-induced

protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem

276:29596–29602, 2001.

98. Wang W, Sawicki G, Schulz R. Peroxynitrite-induced myocardial

injury is mediated through matrix metalloproteinase-2. Cardiovasc

Res 53:165–174, 2002.

99. Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schöneich
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